

Regulatory Perspectives of Implementing TDM – Challenges and Opportunities

2017 ASCPT Symposium "Clinical Practice, Hurdles and Expectations in the Individualized Treatment Route to Optimizing Therapy for Biologics" (3/17/17)

Yow-Ming C. Wang, Ph.D.

Biologics Team Leader Division of Clinical Pharmacology III Office of Clinical Pharmacology Office of Translational Sciences CDER / FDA

TDM: Therapeutic Drug Monitoring

Disclaimer

- The presentation today should not be considered, in whole or in part as being statements of policy or recommendation by the United States Food and Drug Administration.
- Throughout the talk, representative examples of commercial products may be given to illustrate a methodology or approach to problem solving. No commercial endorsement is implied or intended.

Overview

- Introduction essential elements of TDM
- Challenges on the path toward individualized therapy
 - What's the target therapeutic range?
 - Managing secondary treatment failures
 - From retrospective/observational studies to prospective studies
 - Evolution of knowledge and additional considerations
- Considerations regarding technical tools
 - Assays for drug concentration and for antidrug antibodies (ADA)
 - Response measures (will not be covered)
- Summary

Therapeutic Drug Monitoring Essentials (a textbook example)

²⁰¹⁷ ASCPT-YM Wang

FDA

Therapeutic Drug Monitoring Essentials

(example - extension to biologics)

The 3rd Element: Non-responders at Population Emax

low

- If High = 100% ...
 - Dosing to achieve E-R plateau will benefit all (100%)
 - Maximum dose (exposure) not required for all; lower may be adequate for some.
- If High < 100% (say, 50%)
 - Dosing to achieve E-R plateau will benefit only 50% subjects
 - Ineffective in the other 50%
 - Dose individualization can avoid ineffective treatment
- Who will benefit? How to tell?

FDA

The 4th Element - Immunogenicity (May result in secondary treatment failure)

- % of infliximab bound to anti-drug antibody (ADA) [↑] over time
- Infliximab (S-), active drug, concentration \downarrow with \uparrow of ADA

FDA

4th Element - Immunogenicity (May result in secondary treatment failure)

- Antibody+ patients lower adalimumab concentration & higher dropout rate
- PK negatively affected before efficacy, PK is a more sensitive endpoint
- Monitoring concentrations may be useful. How about ADA monitoring?

Figure 4. Overall Patient Dropout and Dropout Due to Treatment Failure

Evaluating and Reporting the Immunogenicity Impacts for Biological Products—a Clinical Pharmacology Perspective (AAPS J, 2016)

Yow-Ming C. Wang,^{1,2} Jie Wang,¹ Yuen Yi Hon,¹ Lin Zhou,¹ Lanyan Fang,¹ and Hae Young Ahn¹

Concordance definition:

- ADA+ \rightarrow higher clearance (lower exposure) & reduced efficacy
- ADA+ → no effect on clearance & no effect on efficacy

Challenge #1 - Target Concentration Range?

- Retrospective analysis of clinical trial data is often the basis for literature reports
- Available trough concentration data (often a subset)
 → find the upper quartile range
 → defined as target range
- Some cases are not so easy...
 E-R & dose range in efficacy trials,
 - Limited dose range with efficacy & PK data
 - E-R shown from a single dose level
 - No dose-response, but data show E-R

Challenge #1 - Target Concentration Range?

- Is the target concentration range from population E-R suitable for all subjects?
- Considering PK and PD variability,
 - * same dose ≠ same exposure
 - * same exposure ≠ same response
- Desired exposure may be lower in some subjects.
- Will the benefit/risk profile at higher exposure be favorable for these subjects?

Challenge #2 – Addressing Non-Responders

- Non-responders may exist despite achieving high exposure.
- Will pushing the concentration into E-R plateau (or high) range have favorable benefit/risk for these subjects?
- > When to stop the dose increase or stop the treatment?
- Availability of response marker/metric for decision-making?

Challenge #3 - Addressing Secondary Treatment Failure with ADA Monitoring?

What We Know...

- Drug levels are important
- ADA+ → lower drug levels, in many cases
- ADA+ \rightarrow may lose efficacy
- Not all ADA+ are equal... but, some have higher titers
- ADA+ after repeat dosing

We May Not Know for Sure ...

- The target levels or range?
- Overcome by increase dose?
 When is it not likely to work?
- What's a bad level of ADA?
- Clinical meaning of ADA titer?
- Time course?
 e.g., onset of occurrence, duration of persistence

Substantial Research on Dose Optimization (TDM) in Secondary Treatment Failure of IBD

- Generally monitor drug level & ADA, in addition to disease status.
- The goal post for each parameter differed across reports, generally based on institutional experience.
- Definitions of loss of response also differed across reports.
- Present challenges to future large scale implementation

FD/

An Observational Study Evaluating Association **FDA** of Clinical Outcomes with Trough & ADA Levels

- UC/CD patients (N=52), infliximab dose escalated by physicians
- Drug level and ADA level collected prior to dose change
- Clinical remission vs. levels of drug & ADA before dose change

An Observational Study Evaluating Association FDA of Clinical Outcomes with Trough & ADA Levels

- UC/CD patients (N=52), infliximab dose escalated by physicians
- Drug level and ADA level collected prior to dose change
- Mucosal healing vs. levels of drug & ADA before dose change

Paul et al. 2013 IBD

2017 ASCPT-YM Wang

* Assumed 13 (instead of 12) same as clinical remission data since text in paper was inconsistent.

Prospective Study (TAXIT trial)

FDA

infliximab maintenance therapy in UC/CD patients

- Aim: to compare the efficacy, cost-effectiveness, and safety of (1) concentration-based dosing vs. (2) clinically based dosing
- On infliximab for \geq 14 weeks, in stable clinical response (n=263)
- Dose optimization to reach trough concentration = 3-7 mcg/mL

TAXIT Trial – Dose Optimization Outcome

FDA

Prospective Study (TAXIT trial)

- N=251 successfully dose optimized with trough level = 3-7 mcg/mL
- Randomized (1:1) to maintenance dose adjustment
 - By clinical features Clinically based dosing group
 - By trough concentrations Concentration-guided dosing group
- Treatment for 1 year

Conclusions: Continued concentration-based dosing was not superior to clinically based dosing for achieving remission, but was associated with fewer flares during the course of treatment.

Clinically based dosing Concentration-based dosing

Emerging Knowledge May Require Additional Considerations for TDM

- Advancing from managing secondary treatment failures to preventing it with aggressive initial treatment (top-down approach)
 - Aim to reach a target concentration range early
 - When to measure? What's the target concentration range?
- Further granularity of immunogenicity, e.g., transient ADA, persistent ADA, neutralizing activity
 - What's the characteristics of ADA?
 - How do they affect the therapeutic management?
- Many drugs for chronic indications are available in fixed dose pre-filled syringes or auto-injectors
 - How much flexibility for dose individualization?

- An increasing number of suppliers for drug assay and ADA assay using various technologies; e.g., laboratory developed test (LDT)
- Will results from all assays lead physicians to the same dosing decision?

Test provider	Methodology	Infliximab levels	Anti-infliximab antibody levels	Adalimumab levels	Anti-adalimumab levels
A	Reporter gene luminometry	Yes	Yes	Yes	Yes
В	ECLIA	Yes	Yes	Yes	Yes
С	LC-MS/MS	Yes	Yes	N/A	N/A
D	HMSA	Yes	Yes	Yes	Yes
E	ELISA	Yes	Yes	Yes	Yes

ECLIA, electrochemiluminescence immunoassay; ELISA, enzyme-linked immunosorbent assay; HMSA, homogenous mobility shift assay; LC-MS/MS, liquid chromatography, tandem mass spectrometry; N/A, test not available.

Consideration for ADA Monitoring

- ADA assay drug tolerance < Trough Css in 13 of 22 products
 - In some cases, drug tolerance < PK assay LLOQ (Lower Limit of Quantification)
 - * A simplified view for illustrative purposes: single fixed value for drug tolerance

Considerations for Drug Level Assay (1)

mAb

drug

Streptavidin Conjugated HRP

biotinylated anti-mAb X

ADA

substrate

mAb X

HRP

anti-mAb X

"Active" Assay

With <u>active drug</u> assay for mAbs

What if the assay measures total mAb concentration?

• e.g., the assay has an acid dissociation step...

• Will the effects of ADA on PK be detectable?

Considerations for Drug Level Assay (2)

Example: ELISA for rituximab – assay reagents matter

- Systematic differences in PK data from two assays
- Multiple possible reasons: differences in affinity, target interference, ... etc.
 - Reagent-drug binding affinity differ by 10⁴ (mAb > peptide)
 - mAb can disrupt drug-target complex, detecting the target bound drug (i.e., total drug).
 - Peptide based assay detects the 'free' drug.

	Capture reagent	Detection reagent	
mAb	Anti-CDR mAb	Anti-h-IgG	
Peptide	Target CD20 fragment	Anti-h-IgG	

Blasco 2007 J Immunol Methods

FDA

Summary – Considerations for TDM (1)

- For dose individualization of biological treatment,
 - Adverse effects often are not a useful guide due to the nature of delayed manifestation.
 - PK (drug concentration level) may not be a reliable guide when treatments have response rates <100%.
 - It may be feasible by monitoring PK + response (PD/clinical).
- For management of loss of efficacy,
 - So far, research focused on monitoring PK + immunogenicity + response (PD/clinical)
- Emerging knowledge may require additional considerations
 - Impact of enhanced granularity of immunogenicity data
 - Drug product presentations & dosing flexibility

Summary – Considerations for TDM (2)

- Fit-for-purpose assay tools
 - For institutional use, or national/international use
 - Suitability for use in TDM, e.g., turnaround time
- Fit-for-purpose studies
 - To guide institutional use of TDM, or
 - To support regulatory claim/labeling
- Soundness of TDM strategy from hypothesis generating studies, including how to address non-responders
- Robustness of prospective confirmatory evaluations of effectiveness & safety of TDM

Acknowledgments

- DCPIII Biologics Team
 - Jie (Jack) Wang, Ph.D.
 - Christine Hon, Pharm.D.
 - Lin Zhou, Ph.D.
 - Anand Balakrishnan, Ph.D.
 - Lucy Fang, Ph.D. (2011-2013)
 - Purav Bhatt, Pharm.D.(Fellow 2013)

- DCPIII management
 - Hae-Young Ahn, Ph.D.
 - Dennis Bashaw, Pharm.D.
- Division of Gastroenterology and Inborn Error Products
 - Lesley Hanes, M.D., M.Sc.
 - Tara Altepeter, M.D.
 - Donna Griebel, M.D.